CARDIAC PERFORMANCE

Jonas Addae
Medical Sciences, UWI
MEASUREMENTS OF CARDIAC PERFORMANCE

• CARDIAC OUTPUT (CO)
 • The volume of blood pumped out by one ventricle in one minute (= 5000 mL/ min)
 • CO = SV x HEART RATE

• STROKE VOLUME (SV)
 • SV = EDV - ESV (120 ml - 50 ml)
 • The volume of blood pumped out by one ventricle in one heart beat (= 70 mL /beat)
 • The most important determinant of Arterial Pulse Pressure (e.g. strong vs weak pulse)

• STROKE WORK (SW)
 • SW = SV x ARTERIAL PRESSURE
 – Oxygen consumption by the heart α SW
 – SW for L Ventricle > for R ventricle

DETERMINANTS OF CARDIAC PERFORMANCE

• PRELOAD

• AFTERLOAD

• CONTRACTILITY

• HEART RATE
PRELOAD : DEFINITIONS

• Loading condition on the heart at the end of diastole

• Stretch of myocardial muscle before contraction

PRELOAD - Measured by:

• Ventricular end diastolic volume (EDV)

• Ventricular end diastolic pressure

• Right atrial pressure
 – estimated by the Central Venous Pressure (CVP)

• Left atrial pressure
 – estimated by the pulmonary artery wedge pressure (using a catheter inserted into a small pulmonary vessel)
PRELOAD vs CO

- **↑ Preload → ↑ EDV → ↑ SV → ↑ CO**
 (within limits)
 - **Cause**
 - ↑ Preload ←
 - ↑ Venous Return
 - ↑ Aortic Resistance
 - **Significance**
 - CO adjusts automatically to Venous Return

Mechanism of Frank-Starling law:

- overlap of actin & myosin
- length-induced - sensitivity of the myofilaments to Ca²⁺
In Heart Failure, there is decreased Cardiac Performance (compared to a normal heart) for the same degree of muscle fibre stretch.

• Ionotropic drugs increase Cardiac Performance in normal or failing heart.

DETERMINANTS OF CARDIAC PERFORMANCE

• PRELOAD

• AFTERLOAD

• CONTRACTILITY

• HEART RATE
AFTERLOAD: DEFINITIONS

• Circumferential ventricular wall stress during ejection
• The amount of force that must be generated by the myocardium in order to eject blood into the arteries
• The load against which the ventricle must contract when it ejects blood into the arteries

DETERMINANTS OF AFTERLOAD

• Wall stress \((\sigma) = \)
 • Force / cross-sectional area
 • \(PR/2W \) (Law of Laplace)
 \(P = \) intraventricular pressure
 \(R = \) radius of the heart chamber
 \(W = \) thickness of heart wall

NB: \(PR/2W \) for sphere
 \(PR/W \) for cylinder
DETERMINANTS OF AFTERLOAD

\[\sigma = \frac{PR}{2W} \]

- ↑ Afterload ←
 - ↑ arterial resistance/pressure (e.g. in hypertension)
 - ↑ radius of ventricle chamber (e.g. in heart failure)
 - ↓ thickness of heart wall
 - although hypertrophy increases work load on the heart by increasing wall stiffness (i.e. decreasing compliance of the heart)

AFTERLOAD vs CO

↑ AFTERLOAD → ↓ CO

↑ Afterload → Myocardial hypertrophy
• Cardiac Performance increases with increasing Preload

• Cardiac Performance decreases with increasing Afterload

In Practice:

• When MAP < about 150 mmHg
 ↑ AFTERLOAD → No Change in CO
 • ↑ MAP →
 ↑ EDV →
 ↑ σ → ↑ Intraventricular Pressure to overcome arterial pressure

□ ↑ Afterload → Myocardial hypertrophy
AFTERLOAD vs CO

In Practice:

• *When MAP > about 150 mmHg*
 ↑ AFTERLOAD → ↑ ESV → ↓ SV → ↓ CO

• The ↑ σ is not sufficient to overcome the very high MAP

To be Continued